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arrangements. Over 150 offices have been equipped a t  this 
writing, and planning is under  way  for  many more. 
System performance to  date  has been very  satisfactory. 
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ABSTRACT: The reduction of experimental data to histograms is 
often  useful, particularly if the experimental site  is  remote (e.g., 
in  a  spacecraft). An implementation utilizing prefix coding is de- 
scribed which permits  assembling an N-sample, K-cell histogram 
directly from  sequentially  received data with minimal logic and 
memory  requirements. The  necessary storage is shown to differ 
from the minimum number of bits required for unique specification 
of an  (N, K )  histogram by less  than  3/4 K when  N >> K. 

The method  codes the contents,  denoted by n, of a cell into a 
binary code word of length f(n). A minimax theorem  is  presented to 
justify  selecting f(n) from  a  class of linear  staircase functions, and 
the  best  such function satisfying the  Kraft inequality is  determined. 
Graphs  are presented of the resulting  storage  requirements. 

KEYWORDS: Coding, Communication Theory, Data Storage, Data 
Transmission  Systems,  Experimental  Data,  Information  Theory, 
Processing, Telemeter Systems. 

1 This  paper presents the results of one phase of research  carried 
out at the  Jet Propulsion Laboratory, California Institute of Tech- 
nology, under  Contract NAS-7-100, sponsored by  the  National 
Aeronautics and Space  Administration. 

T 
I. INTRODUCTION 

HE construction of an N-sample, K-cell histogram  is 
a useful data reduction and compression operation  for 

a wide variety of experiments.[’] An N-sample, K-cell 
histogram, which will be referred to as an ( N ,  K )  histo- 
gram,  is defined as a set of K non-negative numbers 
nl, nz . . . , nK such that nl + n2 + . . . + ng = N .  In  this 
paper, we present an efficient and easily implemented 
method  for assembling, storing, and  transmitting histo- 
grams  in the form of binary-coded sequences. The method 
is well suited for dynamic  (delay line) storage and  has 
interesting  implications to list  storage of variable-length 
words in computers. 

One obvious  method of storing an ( N ,  K )  histogram 
utilizes K blocks of storage,  each block containing  [logsN]+ 
bits,2  for a total storage of K [log2N]+  bits. (Since the  total 
number of samples  in the histogram is known to be N ,  
one cell may be omitted  and  (K - 1) [log2N]+  bits will 
suffice.) This method uses constant  length  binary repre- 
sentations of each n,. Since at  most one n, can be as large 
(or almost as large) as N,  this  method is rather inefficient 
in  terms of storage. 

A second method of storage  is  incorporated  into the 
Quantiler, a machine built  at  the  Jet Propulsion  Labora- 

while [k]  + denotes the smallest  integer greater  than  or equal to k .  
I n  this paper, for  any real  number k, [k] - is the integer part of k 
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tory for the purpose of calculati,ng quantiles.[11~[21 It stores 
an  (N, K )  histogram  in  a  delay line register  N + K - 1 
bits long by means of a  variable  length code. The number 
of samples  in the  kth cell nk is specified by  the number of 
zeros contained  between the (k - 1)st  and  the  kth one, 
k = 1, 2, . . ., K ,  except that  the  0th  and  Kth ones are 
deleted. The beginning and  end of the register are fixed 
and specified by  other means. Fo:r K - 1 > N/(logZN - I), 
this second method  has  an  advantage over the first;  for 
large N ,  the second method is very inefficient. For example, 
if N = 1024 and K - 1 = 256, 

( K  - 1)logZN = 2560, N + K - 1 = 1280 

whereas, if N = 16384 and K - 1 = 256, 

(K - l)log,N = 3554, N + K - 1 = 16640. 

11. OPTIMUM  TORAG AGE 

The minimum  storage size required  for (N, K )  histo- 
grams is easily  determined. 'The number of distinct 
histograms  (partitions of N into K parts) is the binomial 

coefficient (" '>. Thus,  the minimum  binary 

storage  required for unambiguously specifying an  (N, 
K )  histogram is 

This  minimum  storage is achievable  by  means of a code 
book. Since the storage  required for a code book is in gen- 
eral  unreasonable, GordonL31 has given an algorithm  and  an 
implementation which permits  an  optimum code achieving 
Smin to be  computed  from the m.onotonic sequence 

(nl, nl + n ~ ,  nl + n2 + n7, . . . , nl + n2 + . . . + nK-1). 

Unfortunately,  this  method does not  appear  to be adapt- 
able to  the assembly of histogra,ms from  samples  arriving 
one a t  a  time unless a coding anti  storage  device  similar to 
that described in the remainder of this  report is also 
available. If the cost of transmission  is  extremely  high, 
however, it  may  pay in some cafjes to  use the Gordon cod- 
ing  on the complete (N, K )  histo,gram  prior to transmission 
even  though,  as  demonstrated  in  the sequel, the addi- 
tional  savings  in the number of transmitted  bits is small. 

To facilitate  comparisons, we now determine useful ap- 
proximations to Xmin. By Stirling's approximation, we have 

N + K - 1  ( K - 1  

(1 + K+)N. 

Thus 

Smin N X* = ( K  - 1) log2 1 -4- ~ ( K - 1  

N log, (1 + K+1) + 2 log2 (" + - ). (2) 
1 

2n(K - 1)N 

Assuming N >> K >> 1, the usual case, yields 

N 
K - 1  

X* X** = 

- 1 log2 (K - 1). (3) 
2 

For example 

N = 1024, K - 1 = 256 

Xrnin = 919, s* = 919, X** = 877; 

N = 16 384, K - 1 = 256 

Smin = 1903, X* = 1903, X** = 1901. 

Note  that  the  two  nonoptimum schemes discussed in Sec- 
tion I fall significantly short of the optimum. 

111. LINEAR PREFIX CODE 
A close approach to  the optimum  may  be  obtained  by 

the use of prefix code theory.r41 The prefix condition states 
that, although code words may differ in  length,  no code 
word contains  another code word as  its initial  portion. As 
a  result, the code words are uniquely and  instantaneously 
decipherable. 

For coding an ( N ,  K )  histogram,  a  binary code word 
satisfying the prefix condition is assigned to each  number 
between 0 and N. The code words  representing the con- 
tents of the K cells can  then be placed in  a  shift  register or 
delay line, one after  the  other,  without  the use of addi- 
tional  separators. Since the same prefix code is used for 
each cell, Xmin is not achieved.  However, we show in Sec- 
tion V that  the best of the prefix codes is very  nearly  opti- 
mum. 

The problems of choosing a good  prefix code remain. 
It appears  reasonable that a code for which all  histograms 
have  essentially the same  storage  requirement is best. 
This equi-storage property is achieved if the length,  say 
f(n), of the code word assigned to  the number n is  a  linear 
function of n, that is, if, ignoring  integer  constraints  for the 
moment, 

f(n) = an + b .  (4) 

In  this case the sttorage S required  for the histogram 
(nl, n2, . . . , nK) is (again  observing that  the  Kth cell need 
not be  sent) 

X = f(n1) + f(n2) + . . . + f(nK-1) 

= a(n1 + nz + . . . + % - I )  + b(K - 1) (5) 

5 UN + b(K - 1) 

where the inequality follows from the observation that 

E n k  = N.  The equality sign is achieved when nK = 0. 
K 

k = l  
The use of a prefix code which is  linear  is justified by 

means of the following general  theorem. 
Let f denote an integer-valued function  and  let C be a 

class of functions  such that if g is  in C and if f(n) 2 
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g(n),  n = 0, 1, 2, . . . , N ,  thenf is also in C. Let p ,  be the  to minimize S, where 
density  function of a  discrete  random  variable x which m __ 
takes on only the non-negative  integer  values 0, 1, 2, . . . , S = max ( K  - 1) pi f ( j )  = ( K  - 1) max f(x) (15) 
N ,  and  let  an overhead bar  denote  statistical  expectation. ( P j l  j = O  PX 

and where p ,  is such that 
Theorem 

- -- 

2 = /A I N / ( K  - 1). (13) 
Subject to  the conditions f in C and x = /A, 

__ __ The only  thing that now prevents  us from applying  the 
min max f(x) = max f*(x) = ap + b (6) theorem and concluding that  the optimum f has the form 

f p 2  P2 

in which the minimax  function f* has the form 

f*(.) = [ax + b]-. (7) 

To complete the specification off*,  it is only necessary to 
select from all  pairs (a,  b ) ,  such that [ax + b ] -  satisfies 
C, the pair of constants for which U/A + b is a  minimum. 

The proof of the theorem is contained  in the Appendix. 
We now apply the theorem to  the selection of a prefix code 
for efficiently encoding an ( N ,  K )  histogram. In  particular, 
we wish to minimize the maximum  required  storage 

f = [ax + b ] -  

is the restriction imposed on p ,  by  (11),  that P [ x  = j ]  = 
p j  must  be  an integer  multiple of l/(K - 1). 

Thus,  although the theorem does not prove that f(x) = 
[ax + b ] -  is minimax  for  histogram encoding, it strongly 
suggests that such  a code length  distribution is good. 
The  authors conjecture that  this class of linear prefix codes 
is  optimum. In  the remainder of this  paper, we therefore 
restrict  attention  to linear  staircase  functions; in particu- 
lar, we restrict  attention  to  the function 

(9) Sincef(x) I - + b, the maximum  value of S ,  say Sp,  is 
X 

m 
We  shall work with the slightly weaker sufficient  condition easily bounded. 

which permits code words to be assigned to all non-nega- 
tive integers. A function f which satisfied (10) is said to be 
in class C. Note  that if g is in C and if f(n) 2 g(n), n = 
0, 1, 2,  . . . , then f is in C". 

As the next  step  in  applying  the theorem, recall that 

n1 + nz + . . . + nK-l I N 

with  equality if and only if nK = 0. Hence 

j p ,  = /A 5 N / ( K  - 1) 
j = o  

in which 

number of  n,'s equal to j exclusive of nK 
Pj  = . (11) K - 1  

Hence 

m 

0 5 p j  5 1; p j  = 1. 
j = O  

Thus, we can  think of pi as  the probability that a  random 
variable x takes on the value j .  The code selection problem 
may then be phrased: select f in class C as defined by (10) 

S, = (K - 1) max f(x) 
P= 

N 
m 

- < - + ( K  - 1) b. 

Since S ,  is an integer,  a  tighter  upper  bound is 1N/m]-  + 
(K - 1)b. This  value is achieved when n~ = N and 
nz = n3 = . . . = nK = 0. Thus,  the maximum  storage  for 
the linear prefix code of (14) is 

x, = - + ( K  - 1)b .  [:I- 
We now select the integers m and b to minimize S, sub- 

ject to  the condition, (lo), guaranteeing the existence of a 
prefix code. For  the assignment of (14), the condition be- 
comes 

7n[2-0 + 2--(0+1) + 2- '0+2)  + . . . ]  5 1 

or 

For fixed N ,  K ,  and b, we see from  (15) that X, is nonin- 
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creasing with increasing m. We therefore take (16) to  be 
satisfied with  the  equal sign 

m = 20-1. (17) 

For b 2 1, na is an integer  whenever b is an integer. Since 
the converse is  not  true,  for purposes of optimization we 
hereafter consider b to be the inc!ependent variable  with m 
determined  by (17). 

From (15) 

E -  1 + (K - l ) b < S ,  5 N - +  ( K -  
m  m 

1)b. (18) 

It is  reasonable,  therefore, to select b to minimize 
[(Nlm) + (K - l)b].  Treating b as a continuous  variable 
and holding N and K fixed, we have 

d [z + (K - 1)b = - -- + (K - 1). N dm  
db m ] m2 db 

However,  from (17), 

Thus,  the  derivative is zero whenever 

N 
m log2 e 

-- + (K - 1) = 0. 

Furthermore,  the second derivative is 

so that  the function is concave 1J . 3  We conclude from (17) 
and (19) that [(N/m) + (K - l)b] is minimized by  set- 
ting b = bo where 

Since bo is not generally an integer, i t  is necessary to  round 
up or down to  obtain  an integer, the choice depending  upon 
the resulting  values of S,. The  concavity of [(N/m) + 
(K - l)b] guarantees that on(:  of these  two choices is 
optimum. The concavity  also  guarantees that  an upper 
bound to X, is  achieved by subs1;ituting b = bo + 1 in the 
upper  bound of (18). The result is 

N 
S,  5 (K - 1) log2 - ( K - 1  + 2.2). 

Let  us  determine  the  parameters of a  particular code. 
I n  one of the examples of Section I, we considered N = 

1024, K - 1 = 256. For  those 7mlues, we get  from (20) 

bo = log, (256) + 0.47 = 2.47. 
1024 

From (15), we find that S,  = 1024 for  both b = 2 and 

which is  concave (second derivative is non-negative) and convex 
3 Here  and  in Appendix A we use IJ and fl to  denote a function 

(second derivative is non-positive), respectively. 

b = 3. This  storage compares favorably  with Xn,in = 919, 
and  with X = 2560 and 1250 for the two schemes men- 
tioned  in  Section I.  Note  that  the JPL code described in 
Section I, in which the number of samples  in the  kth cell is 
indicated by  the number of zeros contained  between the 
(k - 1)st  and  kth one is a special case of the codes de- 
scribed  here  for which b = l ; such  linear prefix codes are 
optimum when N / ( K  - 1) < 2. 

V. COMPARATIVE PERFORMANCE OF CODES 

In  Section 11, we showed that  the minimum  storage re- 
quired  for an (N, K )  histogram, Smin, is approximated for 
N >> K >> 1 by 

1 
- logZ(K - 1) .  
2 

In  Section IV, we observed that  the storage  required by 
the linear prefix code was  bounded by 

N x, 5 (K - 1) log2 ___ ( K - 1  
+ 2.2). 

Comparing S** and X,, we see that  the prefix codes here 
described have a  storage  requirement which differs from 
the minimum by  approximately  (K - l)(2.2 - log2e) or 
3/4 K bits. 

In  Figs. 1 and 2, Smin and S, are compared.  Figure 1 
shows Smin and X, as  functions of N for  several  values of K 
while Fig. 2 shows both  as functions of K for  several  values 
of N .  We see that Smin and S,  are  quite close and  that, for 
given values of K and N ,  their difference is approximately 
3/4 K as predicted. 

VI .  IMPLEMENTATION 
By restricting  attention  to linear prefix coding, we suffer 

a  storage  penalty  on the order of 3/4 K bits. In accepting 
this  suboptimality, we generate codes which are extremely 
simple to implement and  thus  interesting for  practical  ap- 
plications. In  this section  one  method of carrying out  the 
implementation is discussed. 

We  first specify the code for a given b and m = 2b-1. Re- 
call that, according to  (14), the code words assigned to 
0, 1, . . . , m - 1 are of length b; those assigned to m, 
m + 1, . . . , 2m - 1 are of length b + 1 ; those assigned 
to  2m, 2m + 1, . . . ,3m - 1 are of length b + 2;  and so on. 

A prefix code is  perhaps  most easily visualized as a tree 
(see FanoC61). A linear prefix code with b = 3 and m = 

2O-l = 4  is  presented  in  Fig. 3. Each  terminal node is as- 
signed an integer  shown  in  parentheses. The sequence of 
branches  leading  from the  tree  root  to  terminal node n 
specifies the code word assigned to n by  the convention 
that a  branch  with positive slope denotes 0 and a branch 
with  negative slope denotes  1. The code words  for each in- 
teger are also given in the figure. The generalization of this 
code to  other values of b is straightforward. It is  obvious 
from the construction that no code word is the prefix of any 
other. 
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NUMBER OF SAMPLES, N 

Fig. 1. Storage  requirements for linear prefix codes compared to theoretical minimum. 

7 I I I l l  I I - STORAGE FOR LINEAR PREFIX CODES -- MINIMUM POSSIBLE STORAGE 
6 -- 

N = NUMBER OF SAMPLES 
‘N = 214 - 

NUMBER OFCELLS, K 

Fig. 2. Storage  requirements for linear prefix codes compared to 
theoretical minimum. 

Implementation of this code is facilitated by observing 
that each code word has  three  distinct segments. Consider 
the code word assigned to n. The first  segment, consisting 
of b - 1 digit.s, is the binary  representation of the number 
m modulo 2 - l .  The second segment is a sequence of t 1’s 
where 

Note  that if n 1’s are fed into a binary  counter  with b - 1 
stages, the counter overflows exactly t times and  the result- 
ing  count  is n modulo 2b-1. The  third segment for every 
code word is a single 0, indicating the end of the code word. 
For example, if b = 4, the code word  for 17 is 0 0 1 1 1 0 
while the code word for 85 is 1 0 1 1 1 1 1 1 1 1 1 1 1 0. 

Fig. 3. The linear prefix  codes represented as a tree, b = 3, m = 4. 

In  Fig. 4 we diagram  one  method for generating the 
coded histogram. The basic storage  unit is an  S-bit  shift 
register that is  initially  set to all zeros. Each  time a sample 
arrives  from the experiment  generating the histogram, it  is 
assigned a  histogram cell. The number k of this cell is 
stored  in the New Cell Number register and a start pulse 
given. The  start pulse serves to set flag z, to enter zero 
into the cell counter, and  to  start  the shift register shifting 
right. The bit  stream from the shift  register  bypasses the 
unit delay,  enters the 1-stage adder,  appears  unchanged at  
the adder  sum-output,  and  is  returned  to  the left  end of the 
shift register. Flag z remains  set  during the first segment of 
each code word; following the first (b  - 1) bits x is  reset to 
0 and is not  set again until a zero arrives  marking the end 
of the code word. The end-of-word zero also causes the cell 
counter to be increased by 1. 



154 IEEE TRANSACTIONS ON COXMUNICATION TECHNOLOGY APRIL 1967 

START  STOP 

- 
I STAGE 

COMPLEMENT 

T 

DOES CELL COUNT 

f t I  I I  
J 

NUMBER COUNTER A O O O N E  

UNIT  DELAY 
T - ENAELED WHEN Y IS  RESET 

Y - ENABLED WHEN Y IS SET 

Fig. 4. Implementation of linear prefix encoder. 

When the cell count  equals the new  cell number,  a 1 is 
added,  via the  carry  input of the 1 stage  adder, to  the least 
significant digit of the first  segment of the codeword repre- 
senting  the present  contents of the cell.4 The  updated  least 
significant digit is returned  to  the .S-stage shift register while 
a carry, if present, is added  to  the next  more significant 
digit. 

This continues until (0 - 1) bits  have been updated. 
At  this  point flag x is  reset. If there was no overflow of the 
adder,  that is, no  carry  from thvz (b  - 1)st  addition,  the 
remaining contents of the shift  register  pass  unchanged 
through the  adder  and back to  the shift  register. If there  is 
a  carry,  however, an additional 1 must  be  inserted  into  the 
second segment of the code word. This is accomplished by 
setting flag Y and,  after a unit  delay, injecting  a 1 (from 
the  carry  output)  into  the  bit  stream  returning  to  the  shift 
register. Flag Y causes a unit delay to be  inserted  into  the 
bit  stream coming from the shift  register,  thereby  main- 
taining the proper  bit  spacing. 

After X shifts, the  updating of  xhe histogram is complete. 
We  then  wait for  a new experimental  result and  repeat. 
After N such cycles, the histograin is completely assembled 
and  the coded form is ready for any processing or trans- 
mission. 

VII. CONCLUSION 
A  method  for assembling and  storing histograms using 

prefix codes has been described. The method is rather 
For  the implementation, the order of the digits in  the first seg- 

ment of the code word is reversed, with  the  least significant of the 
b - 1 digits appearing first. 

easily implemented,  requires little more  storage  than  that 
absolutely necessary for uniquely specifying an ( N ,  K )  
histogram, and  permits construction of the histogram  as 
data arrives. 

The theorem used to  justify  the linear  staircase assign- 

ment of code word lengths, f ( n )  = ~ + b,  did not prove 

that  this choice was optimum.  Whether  another assign- 
ment of lengths  for the prefix code can  reduce  storage  fur- 
ther is an open question. 

[:I- 

APPENDIX 
PROOF OF THEOREM 

Let f be an integer-valued function in class C. Since 
f(x) depends  only on  the  valuesf(n), { n = 0, 1, 2 ,  . . . , N 1, 
we may ignore the values of f for noninteger  arguments. 
Define h(x), 0 5 x 5 N ,  as  the convex n hull of the 
sequence of samples { f(O), f(l),J(2), . . . , f ( N )  } (seeFig. 5 
and Wozencraf t and Jacobsr71 Appendix 7B). Since h(n)  
2 f(n), n = 0,  1, 2, . . . , N ,  me have 

~ 

But, since %= p and h is convex fl , 

max h(x) = h ( p ) .  (23) 
P= 

Let N 1  be the largest  integer less than p for which 
f ( N 1 )  = h(N1) and  let N z  be the smallest integer  greater or 
equal to p for which f ( N z )  = h(N,).  Then, h is a  segment 
of a straight line between N1 and Nz; say 

h ( ~ )  = + b, N1 5 z 5 NP. (24) 

A function which achieves the maximum  in (23)  is 

p , (a )  = p g ( a  - N1) + (1 - P ) S ( ~  - Nz) (25) 

in which p is chosen so that 

2 = pN1 + (1 - p)Nz = p. (26) 

As a check, note that for this  density function 
~ 

h(x) = a% + b = ap + b = h ( p ) .  

Since for this  density function f(x) = h(x), we conclude 
that 

- _ _  

__ 
maxf(x) = up + b. (27) 

PI 

Next define 

$"(x) = [ax + b]-. (28) 

Then (see Fig. 5 )  

f " ( 4  2 f ( 4 ,  ?z = 0, 1, 2, . . ., N (29) 

5 Here, a ( t )  is the  unit impulse function, or delta  function. (See 
Papoulis. P I )  _- 
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I 

0 1  
P X  

- h ( C 0 N V E X  HULL) 
0 SAMPLE OF f ,  INTEGER  ARGUMENT 

.... . ......... f*=  [.x+b]l- 

N ‘2; N  .5 ;N=8 
1 2  

Fig. 5. Convex hull of samples of f ( z ) .  

so that f* is also in class C .  Furthermore, for all p ,  with 
3 = p, 

-~ 
f*(x) I ax + b 

(30) 
= UP + b, 

and  equality is achieved for the density  function of (25) .  
We  conclude that for every  function f in C there is a 

function f*  of the form [ax + b ] -  in C which has  the 
same  maximum as f,  namely, u p  + b. It then suffices to 
search for the minimax  function f*  from  among  functions 
of the form [ax + b ] -  in C.  
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